FREE shipping on qualifying orders when you spend or more. All prices ex. VAT. Enjoy hassle-free delivery, fulfilled by our EU subsidiary. Backed by our 50 State Delivery Guarantee. Regional distributors also available. Sorry, we are unable to accept orders from or ship to .

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.

4,4'-(Benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid

CAS Number 1581774-76-6

Chemistry Building Blocks, Materials, MOF Ligands, Porous Organic Frameworks

Product Code B3181-1g
Price $104 ex. VAT

Metal Organic Frameworks (MOFs) Benzo[c][1,2,5]thiadiazole Ligand

A rigid linear ligand linker for MOFs in applications of Al3+ and Ga3+ ions and L-histidine (His) detection


Specifications | MSDS | Literature and Reviews


4,4'-(Benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid (H2BTDB), CAS number 1581774-76-6, has a benzo[c][1,2,5]thiadiazole core with 4- benzoic acid at 4,7-positions.

Fluorescent Eu-MOF with Eu3+ ions as metal nodes and electron-deficient, thiadiazole-functionalized ligand H2BTDB as organic linkers is developed for dual-target detection. Sensitive detection of both ethylamine and gossypol was achieved with a detection limit of 1.30 μm and 4.32 μm, respectively, thanks to the large pore structure of the MOF.

Two-fold interpenetrated metal–organic framework (MOF), {[Cd2(BTDB)2(4,4-bpy)]·DMF}n (4,4-bpy = 4,4-bipyridine), JXUST-14, is a highly selective and sensitive luminescent sensor for L-histidine (His) with a detection limit of 11.1 ppm. JXUST-14 is the first Cd(II)-based MOF for the detection of His via turn-on and fluorescence blue-shift effects. Eu-MOF {[(CH3)2NH2][Eu(BTDB)2]·2H2O}n (JXUST-11) exhibits a chain-based three-dimensional framework. Moreover, JXUST-11 is considered as a photoluminescent sensor to identify Al3+ and Ga3+ ions by fluorescence enhancement with the detection limits of 2.9 and 10.2 ppm, respectively.

Luminescent Zr-based MOF having a UiO-68 framework topology and incorporating the π-conjugated H2BTDB ligand showed a selective sensing behaviour towards 2,4,6-trinitrophenol (TNP) even in the presence of other potentially competing nitroaromatic explosive compounds. The detection limit of TNP in methanol suspension was found to be 1.63 ppm. This great fluorescence quenching ability of TNP can be attributed to both energy and electron transfer processes as well as electrostatic interactions between the hydroxyl group of TNP and the Lewis basic N-donor sites of the H2BTDB ligand.

General Information


CAS Number 1581774-76-6
Chemical Formula C20H12N2O4S
Full Name 4,4'-(Benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid
Molecular Weight 376.39 g/mol
Synonyms H2BTDB, H2-TTPDC, 4,4'-(benzothiadiazole-4,7-diyl)dibenzoate
Classification / Family Benzo[c][1,2,5]thiadiazole , MOF ligands,

Chemical Structure


1581774-76-6 - 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid chemical sructure
4,4'-(Benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid (H2BTDB) Chemical Structure, 1581774-76-6

Product Details


Purity >98%
Melting Point n.a.
Appearance Yellow powder/crystal

MSDS Documentation


1581774-76-6 - 4,4'-(benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid4,4'-(Benzo[c][1,2,5]thiadiazole-4,7-diyl)dibenzoic acid MSDS Sheet

Literature and Reviews


  1. Thiadiazole-functionalized metal-organic frameworks multifunction-architectonics for dual-target sensing of ethylamine and gossypol, Y. Wang et al., Chem. Eng. J., 441, 136049 (2022); DOI: 10.1016/j.cej.2022.136049.
  2. Benzo-2,1,3-thiadiazole-based, highly dichroic fluorescent dyes for fluorescent host–guest liquid crystal displays, X. Zhang et al., J. Mater. Chem., 14, 1901-1904 (2004); DOI: 10.1039/B402645D.
  3. Turn-on and blue-shift fluorescence sensor toward l-histidine based on stable CdII metal–organic framework with tetranuclear cluster units, J. Li et al., Dalton Trans., 51, 5983-5988 (2022); DOI: 10.1039/D2DT00390B.
Return to the top