FREE shipping on qualifying orders when you spend or more. All prices ex. VAT. Enjoy hassle-free delivery, fulfilled by our EU subsidiary. Backed by our 50 State Delivery Guarantee. Regional distributors also available.Sorry, we are unable to accept orders from or ship to .
It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.
BTB, ETL material in highly efficient OLED devices
Phosphorescent host material for green and red LEDs
BTB, a triazine compound, namely 4,4'-bis(4,6-diphenyl-1,3,5-triazin-2-yl)biphenyl, is used as an electron-transport material in organic light-emitting devices (OLEDs) due to its electron deficiency from the two triazine units.
With electron mobility greater than 10−4 cm2V−1 s−1, BTB demonstrates an electron mobility 10-fold greater than that of the widely-used material tris(8-hydroxyquinoline) aluminum (Alq3). OLEDs incorporating BTB as the electron transport layer exhibit lower driving voltages and higher efficiencies - relative to those incorporating Alq3.
BTB, like other electron-deficient materials (such as T2T), can be used as a phosphorescent host material for green and red light-emitting diodes.
Mapping Recombination Profiles in Single-, Dual-, and Mixed-Host Phosphorescent Organic Light Emitting Diodes, P. Kuttipillai et al., Org. Electron., 57, 28-33 (2018); 10.1016/j.orgel.2018.02.025.
High electron mobility triazine for lower driving voltage and higher efficiency organic light emitting devices, R. Klenkler et al., Org. Electron., 9, 285–290 (2008); doi: 10.1016/j.orgel.2007.11.004.
1,3,5-Triazine derivatives as new electron transport–type host materials for highly efficient green phosphorescent OLEDs, H. Chen et al., J. Mater. Chem., 19, 8112–8118 (2009); DOI: 10.1039/b913423a.
The Ossila website uses cookies for core functionality. By continuing to browse the website you consent to the use of these cookies.More Information
Online orders to can only be placed in . For other payment methods, request a quote or send a purchase order to info@ossila.com to purchase via offline channels.