FREE shipping on qualifying orders when you spend or more. All prices ex. VAT. Enjoy hassle-free delivery, fulfilled by our EU subsidiary. Backed by our 50 State Delivery Guarantee. Regional distributors also available. Sorry, we are unable to accept orders from or ship to .

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.


Product Code M2181A1-100mg
Price $364 ex. VAT

2CzPN, highly efficient TADF sky blue emitter

High-purity (>99.0%) and available online in sensible quantities for priority dispatch


2CzPN is a highly efficient TADF sky blue emitter with two electron-donating carbazolyl moieties attached to the electron-withdrawing dicyanobenzene ring. The carbazolyl units are noticeably distorted from the dicyanobenzene plane by steric hindrance, leading to a small ΔEST of 0.09 eV.

When compared with 4CzIPN, 2CzPN has fewer carbazolyl groups which reduces its electron-donating ability and produces a shift of the emission maximum to shorter wavelength (473 nm).

General Information


CAS number 1416881-50-9
Full name 4,5-Bis(carbazol-9-yl)-1,2-dicyanobenzene
Chemical formula C32H18N4
Molecular weight 458.51 g/mol
Absorption λmax 380 nm in toluene
Fluorescence λmax 473 nm in toluene
HOMO/LUMO HOMO = 5.8 eV, LUMO = 3.0 eV; T1 = 2.5 eV
Synonyms 1,2-Bis(carbazol-9-yl)-4,5-dicyanobenzene
Classification / Family Blue emitting layer materials, Blue phosphorescent host materials, TADF materials.

Product Details

Purity Sublimed > 99% (HPLC)
Melting point Not available
Appearance Pale yellow crystals/powder

Chemical Structure


2czpn
Chemical structure of 2CzPN; CAS No. 1416881-50-9

Device Structure(s)


Device structure ITO/MoO3 (5 nm)/NPB (40 nm)/mCP (10 nm)/2CzPN: (tbt)2Ir(acac) (15 nm, 1.0 wt%)/Bphen (40 nm)/Mg: Ag (100 nm) [2]
Colour Orange orange light emitting device
Max. Power Efficiency 42.1 lm W−1
Max. Current Efficiency 77.9 cd/A
Max. EQE 26.8%
Max. Luminance Efficiency 119,900 cd/m2
Device structure ITO/PEDOT:PSS/PVK:2CzPN (20 wt%, 20 nm)/QDs/ZnO (40 nm)/Al [3]
Colour Red red light emitting device
Max. Power Efficiency 13.77 lm W−1
Max. Current Efficiency 17.33 cd/A
Max. EQE 12.37%
Device structure ITO/TAPC (40 nm)/TCTA (20 nm)/DPSTPA* (75%):2CzPN (25%) (30 nm)/3TPYMB (80 nm)/LiF (1 nm)/Al (100 nm) [4]
Colour Green green light emitting device
Max. Power Efficiency 62.7 ± 2.2 lm W−1
Max. Current Efficiency 59.9 ± 2.2 cd/A
Max. EQE 19.0 ± 0.6%
Device structure ITO/HATCN (5 nm)/NPB (40 nm)/TCTA (10 nm)/mCP:6 wt% 2CzPN (11 nm)/TAZ:4 wt% PO-01 (4 nm)/TAZ (40 nm)/LiF (0.5 nm)/Al (150 nm) [5]
Colour White white light emitting device
Max. Power Efficiency 80.1 lm W−1
Max. Current Efficiency 47.1 cd/A
Max. EQE 38.4%
Device structure ITO/PEDOT:PSS (40 nm)/TAPC (20 nm)/TCTA (5 nm)/o-CzCN:2CzPN (4 wt%, 20 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (200 nm) [6]
Colour Blue blue light emitting device
Max. Power Efficiency 18.36 lm W−1
Max. Current Efficiency 29.23 cd/A
Max. EQE 14.52%
Device structure ITO/PEDOT:PSS (40 nm)/TAPC (20 nm)/TCTA (5 nm)/o-CzCN:2CzPN (4 wt%, 20 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (200 nm) [7]
Colour Blue blue light emitting device
Max. Luminance Efficiency 6,366 cd/m2
Max. Current Efficiency 53.05 cd/A
Max. EQE 25.7%

*For chemical structure information, please refer to the cited references

Pricing


Grade Order Code Quantity Price
Sublimed (>99% purity) M2181A1 100 mg £280
Sublimed (>99% purity) M2181A1 250 mg £560
Sublimed (>99% purity) M2181A1 500 mg £950
Sublimed (>99% purity) M2181A1 1 g £1550

MSDS Documentation


2CzPN MSDS2CzPN MSDS sheet

Literature and Reviews


  1. Highly efficient organic light-emitting diodes from delayed fluorescence, H. Uoyama et al., Nature, 492, 234-240 (2012); doi: 10.1038/nature11687.
  2. High-efficiency phosphorescent organic light-emitting devices with low efficiency roll-off using a thermally activated delayed fluorescence material as host, Y. Qi et al., Org. Electron., 36, 185-191 (2016); DIO: 10.1016/j.orgel.2016.05.043.
  3. Efficient Quantum-Dot Light-Emitting Diodes Employing Thermally Activated Delayed Fluorescence Emitters as Exciton Harvesters, Y. Zhang et al., ACS Appl. Mater. Interfaces, 10, 7435−7441 (2018); DOI: 10.1021/acsami.7b16579.
Return to the top