FREE shipping on qualifying orders when you spend or more. All prices ex. VAT. Enjoy hassle-free delivery, fulfilled by our EU subsidiary. Backed by our 50 State Delivery Guarantee. Regional distributors also available. Sorry, we are unable to accept orders from or ship to .

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.


Product Code M0711A1-100mg
Price $364 ex. VAT

FIrPic, highly efficient phosphorescent dopant material for OLED devices

High purity and available online for priority dispatch


Bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium, abbreviated as FIrPic, F2IrPic or Ir(difppy)2(pic), is one of the most investigated bis-cyclometallated iridium complexes, in particular in the context of organic light emitting diodes (OLEDs). This is because of its attractive sky-blue emission, high emission efficiency, and suitable energy levels as a phosphorescent dopant material.

General Information


CAS number 376367-93-0
Chemical formula C28H16F4IrN3O2
Molecular weight 694.66 g/mol
Absorption λmax 256 nm (DCM)
Fluorescence λem 468 nm, 535 nm (DCM)
HOMO/LUMO HOMO = 5.8 eV, LUMO = 3.1 eV [1]
Synonyms
  • F2Irpic, Ir(diFppy)2(pic)
  • Bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III)
Classification / Family Iridium complex, Phosphorescent blue emitter, Organic light-emitting diodes, Organic electronics

Product Details


Purity

>99.5% (Sublimed)

>98.0% (Unsublimed)

Melting point 330-335 °C (lit.)
Appearance Yellow powder

*Sublimation is a technique used to obtain ultra pure-grade chemicals. For more details about sublimation, please refer to the Sublimed Materials for OLED devices page.

Chemical Structure


chemical structure of FIrpic
Chemical structure of Bis[2-(4,6-difluorophenyl)pyridinato- C2,N](picolinato)iridium(III)

Device Structure(s)


Device structure ITO/MoO3 /FIrpic:CBP/FIrpic:TPBi/LiF/Al [1]
Colour Blue blue light emitting device
Max. Current Efficiency 49 cd/A
Max. Power Efficiency 48 lm W−1
Device structure ITO/NPB(40 nm)/CDBP:10% FIrpic (10 nm)/TPBI (4 nm)/CBP:5% Ir(ppy)3:3% Ir(piq)2(acac) (20 nm)/TPBI (50 nm)/LiF(0.8 nm)/Al [2]
Colour White white light emitting device
Max. Luminance 42,700 cd/m2
Max. Power Efficiency 8.48 lm W1
Device structure ITO/NPB (50nm)/mCP (10 nm)/CbzTAZ:15 wt% FIripic (35 nm)/TAZ (30 nm)/LiF (1 nm)/Al (120 nm) [3]
Colour Blue blue light emitting device
Max. Luminance 40,000 cd/m2
Max. Current Efficiency 25.8 cd/A
Max. Power Efficiency 22.5 lm W−1
Device structure ITO/TAPC (50 nm)/TcTa:FIrpic (7%,10 nm)/26DCzPPy:FIrpic (20%, 10 nm)/Tm3PyPB (20 nm)/Tm3PyPB:Cs (30 nm)/LiF (1 nm)/Al (120 nm) [4]
Colour Blue blue light emitting device
Max. EQE 20.3%
Max. Power Efficiency 36.7 lm W−1
Device structure ITO /NPB (40 nm)/TCTA (5 nm)/TCTA:1 wt% fbi2Ir(acac):4 wt% FIrpic (17.5 nm)/TAZ (40 nm)/LiF/Al [5]
Colour White white light emitting device
Max. EQE 13.3%
Max. Current Efficiency 37.5 cd/A
Device structure ITO/MoO3 (3 nm)/TCTA (50 nm)/TCTA:TmPyPb:FIrpic (20 nm)/TmPyPb (30 nm)/LiF (1 nm)/Al (120 nm) [6]
Colour Blue blue light emitting device
Max. EQE 20.4%
Max. Power Efficiency 55.4 lm W−1
Device structure ITO (150 nm)/NPB (70 nm)/mCP:FIrpic-8.0%:Ir(ppy)3-0.5%:Ir(piq)3-0.5% (30 nm)/TPBi (30 nm)/Liq (2 nm)/Al (120 nm) [7]
Colour White white light emitting device
Max. Luminance 37,810 cd/m2
Max. Current Efficiency 48.1 cd/A
Device structure ITO/DNTPD* (60 nm)/NPB (20 nm)/mCP (10 nm)/mCP:FIrpic (25 nm)/CBP:Ir(piq)2acac (5 nm)/BCP (5 nm)/Alq3 (20 nm)/LiF (1 nm)/Al (200 nm) [8]
Colour White white light emitting device
EQE@500 cd/m2 8.2 %
Current Efficiency @500 cd/m2 12.7 lm W1
Device structure ITO/MoOx (5 nm)/NPB (40 nm)/4% Y-Pt*:TCTA (20 nm)/8% FIrpic:mCP(10 nm)/8% FIrpic:UGH2 (10 nm)/BAlq (40 nm)/LiF (0.5 nm)/Al (100 nm) [9]
Colour White white light emitting device
Max. EQE 16.0%
Max. Current Efficiency 45.6 cd/A
Max. Power Efficiency 35.8 lm W1
Device structure ITO/MoO3 (8 nm)/(NPB)(80 nm)/TAPC(5 nm)/TCTA:4 wt% Ir(MDQ)2(acac) (4 nm)/TCTA:2 wt% Ir(ppy)3 (4 nm)/43 wt% TCTA: 43 wt% 26DCzPPy: 14 wt% FIrpic (5 nm)/TmPyPb (40 nm)/LiF/Al [10]
Colour White white light emitting device
Max. EQE 19.4%
Max. Current Efficiency 43.6 cd/A
Max. Power Efficiency 45.8 lm W1
Device structure ITO/PEDOT:PSS/TCTA:TPOB:10 wt % FIrpic/TmPyPB/Cs2CO3/Al [11]
Colour Blue blue light emitting device
Max. EQE 13.8%
Max. Current Efficiency 28.2 cd/A
Max. Power Efficiency 22 lm W1
Device structure ITO/PEDOT:PSS(40 nm)/TCTA:TAPC:FIrpic:Ir(ppy)3:Ir(MDQ)2(acac) (40nm)/TmPyPB (50 nm)/LiF (1 nm)/Al [12]
Colour White white light emitting device
Max. Current Efficiency 37.1 cd/A
Max. Power Efficiency 32.1 lm W1
Device structure ITO/MoO3 (7nm)/NPB (85 nm)/ (PPQ)2Ir(acac):Ir(ppy)3:FIrpic:mCP/TAZ/LiF/Al [13]
Colour White white light emitting device
Max. EQE 20.1%
Max. Power Efficiency 41.3 lm W1

When fabricating devices, processing and handling materials in a glove box helps maintain their purity and maintain efficiency by avoiding contamination from particulates, moisture, and airborne impurities.

Characterisation


HPLC trace of FIrPic, F2IrPic
HPLC trace of Bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrPic, F2IrPic)

Pricing


Grade Order Code Quantity Price
Sublimed (>99.5% purity) M0711A1 100 mg £280
Sublimed (>99.5% purity) M0711A1 250 mg £560
Sublimed (>99.5% purity) M0711A1 500 mg £1010
Sublimed (>99.5% purity) M0711A1 1 g £1800
Unsublimed (>98.0% purity) M0711B1 250 mg £420
Unsublimed (>98.0% purity) M0711B1 500mg £710
Unsublimed (>98.0% purity) M0711B1 1g £1250

MSDS Documentation


FIrpic MSDSFIrpic MSDS sheet

Literature and Reviews


  1. Band Alignment at Anode/Organic Interfaces for Highly Efficient Simplified Blue-Emitting Organic Light-Emitting Diodes, Z. Liu et al.,., J. Phys. Chem. C, 114, 16746–16749 (2010).
  2. White organic light-emitting devices employing phosphorescent iridium complex as RGB dopants, R. Song et al., Semicond. Sci. Technol. 22, 728–731 (2007); doi:10.1088/0268-1242/22/7/009.
  3. High Power Efficiency Solution-Processed Blue Phosphorescent Organic Light-Emitting Diodes Using Exciplex-Type Host with a Turn on Voltage Approaching the Theoretical Limit, X. Ban et al., ACS Appl. Mater. Interfaces, 7, 25129−25138 (2015); DOI: 10.1021/acsami.5b06424.

Return to the top