FREE shipping on qualifying orders when you spend or more. All prices ex. VAT. Enjoy hassle-free delivery, fulfilled by our EU subsidiary. Backed by our 50 State Delivery Guarantee. Regional distributors also available. Sorry, we are unable to accept orders from or ship to .

It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.

3,3′,5,5′-Tetrabromo-2,2′-bithiophene

CAS Number 125143-53-5

Chemistry Building Blocks, Heterocyclic Building Blocks, Materials, Monomers

Product Code B1081-10g
Price $189 ex. VAT

3,3′,5,5′-Tetrabromo-2,2′-bithiophene

This intermediate is widely used for the synthesis of semiconducting molecules, oligomers and conjugated polymers and more fused aromatic rings.


Specifications | MSDS | Literature and Reviews


3,3′,5,5′-Tetrabromo-2,2′-bithiophene (CAS number 125143-53-5) has a structure of two thiophenes joined at 2,2'-positions and each is brominated with two bromides at 3,5-positions. This tetra-brominated compound adds functions for further polymerization, cyclisation to form polymers or to add conjugation to the bithiophene unit to form fused rings.

3,3′,5,5′-Tetrabromo-2,2′-bithiophene has been used for the synthesis of dithieno[3,2-b:2′,3′-d]pyrrole, dithieno[3,2-b:2,3-d]silole and their derivatives. Bromides at 3,3'-positions give rise to obtaining fused rings for higher degree of conjugation and flat structures. Polymerization of 3,3′,5,5′-tetrabromo-2,2′-bithiophene and ethynylbenzene monomers via the palladium-catalyzed Sonogashira–Hagihara cross-coupling reaction gives microporous polymers that show ultrahigh absorption performance for iodine vapour with an uptake of up to 345 wt%. Homopolymer poly(N-(2-octyldodecyl)-2,2′-bithiophene-3,3′-dicarboximide), derived from 3,3′,5,5′-tetrabromo-2,2′-bithiophene, exhibits n-channel FET activity and its films exhibit a very high degree of crystallinity and an electron mobility >0.01 cm2 V-1s-1 with a current on−off ratio of 107.

3,3′,5,5′-Tetrabromo-2,2′-bithiophene can be obtained by direct bromination of 2,2'-bithiophene with bromine in chloroform and acetic acid. N-Bromosuccinimide (NBS) can also be used as the oxidising agent to replace bromine for the synthesis. By refluxing 3,3′,5,5′-Tetrabromo-2,2′-bithiophene with zinc in hydrogen chloride and acetic acid, it gives 3,3'-dibromobithiophene.

Bithiophene building block

Bithiophene building block

for the synthesis of OLED and organic photovoltaic materials

125143-53-5 Worldwide shipping

Worldwide shipping

Quick and reliable shipping

Capped with bromide

Capped with bromide

for facil coupling reactions

High purity

High purity

>98% Purity

General Information


CAS Number 125143-53-5
Chemical Formula C8H2Br4S2
Full Name 3,3′,5,5′-Tetrabromo-2,2′-bithiophene
Molecular Weight 481.85 g/mol
Synonyms 3,5-dibromo-2-(3,5-dibromo-2-thienyl)thiophene
Classification / Family Bithiophene, semiconductor synthesis intermediates, low band gap polymers, OLED, OFETs, organic photovoltaics

Chemical Structure


3,3′,5,5′-Tetrabromo-2,2′-bithiophene chemical structure
3,3′,5,5′-Tetrabromo-2,2′-bithiophene chemical structure, CAS 125143-53-5

Product Details


Purity >98% (1H NMR in CDCl3)
Melting Point 144.0 °C
Appearance Light yellow to white/off white powder/crystals

MSDS Documentation


3,3′,5,5′-tetrabromo-2,2′-bithiophene MSDS3,3′,5,5′-Tetrabromo-2,2′-bithiophene MSDS Sheet

Literature and Reviews


  1. Synthesis and Properties of Alternating Copolymers Based on 4H-Cyclopenta[2,1-b:3,4-b']dithiophene and 4H-Dithieno[3,2-b:2',3'-d]silol, F. Drozdov et al., Polym. Sci. Ser. B 61, 56–76 (2019); DOI: 10.1134/S1560090419010032.
  2. Novel thiophene-bearing conjugated microporous polymer honeycomb-like porous spheres with ultrahigh iodine uptake, F. Ren et al., Chem. Commun., 52, 9797-9800 (2016); DOI: 10.1039/c6cc05188j.
  3. Two-photon absorption chromophores with a tunable [2,2']bithiophene core, C. Chou et al., Tetrahedron, 62, 8467–8473 (2006); DOI: 10.1016/j.tet.2006.06.085.
Return to the top