FREE shipping on qualifying orders when you spend or more. All prices ex. VAT. Enjoy hassle-free delivery, fulfilled by our EU subsidiary. Backed by our 50 State Delivery Guarantee. Regional distributors also available.Sorry, we are unable to accept orders from or ship to .
It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.
N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine, CAS number 65181-78-4, commonly abbreviated as TPD, is widely used as hole transport materials in organic electronic devices.
TPD is also used as a blue-violet light emitting material or host material on the phosphorescence organic light emitting diodes for its wide energy band being about 3.2 eV with highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) being 5.5 eV and 2.3 eV respectively [1, 2].
Development of high-performance blue-violet-emitting organic electroluminescent devices, K. Okumoto et al., Appl. Phys. Lett. 79(9), 1231–1233 (2001).
Efficiency and Aging Comparison Between N,N′-Bis (3-methylphenyl)-N,N′-diphenylbenzidine (TPD) and N,N′-Di-[(1-naphthalenyl)-N,N′-diphenyl]-1,1′-biphenyl-4,4′-diamine (NPD) Based OLED Devices, M. Maglione et al., Macromol. Symp., 247, 311–317 (2007).
Blue-shifting the monomer and excimer phosphorescence of tridentate cyclometallated platinum(II) complexes for optimal white-light OLEDs, L. Murphy et al., Chem. Commun., 48, 5817-5819 (2012), DOI: 10.1039/C2CC31330H.
Low-voltage organic electroluminescent devices using pin structures, J. Huang et al., Appl. Phys. Lett. 80, 139 (2002); http://dx.doi.org/10.1063/1.143211.
Hydroxyphenyl-pyridine Beryllium Complex (Bepp2) as a Blue Electroluminescent Material, Y. Li et al., Chem. Mater., 12, 2672–2675 (2000); DOI: 10.1021/cm000237u.
Organic white light electroluminescent devices, S. Liu et al., Thin Solid Films, 363, 294-297 (2000); doi:10.1016/S0040-6090(99)01017-2.
Highly efficient bilayer green phosphorescent organic light emitting devices, W-S. Jeon et al., Appl. Phys. Lett., 92, 113311 (2008); http://dx.doi.org/10.1063/1.2898527.
High-Efficiency Organic Electroluminescent Device with Multiple Emitting Units, C-C. Chang et al., Jpn. J. Appl. Phys., 43, 6418–6422 (2004); [DOI: 10.1143/JJAP.43.6418.
High efficiency, solution-processed, red phosphorescent organic light-emitting diodes from a polymer doped with iridium complexes, M. Song et al., Org. Electronics, 10 (7), 1412–1415 (2009), doi:10.1016/j.orgel.2009.07.012.
White-Light-Emitting Material for Organic Electroluminescent Devices, Y. Hamada et al., Jpn. J. Appl. Phys. 35 L1339-L1341 (1996); http://iopscience.iop.org/1347-4065/35/10B/L1339.
A Novel Yellow Fluorescent Dopant for High-Performance Organic Electroluminescent Devices, X. Q. Lin et al, Chem. Mater., 13 (2), 456–458 (2001), DOI: 10.1021/cm0004679.
Organic plasmon-emitting diode, D. M. Koller et al., Nature Photonics 2, 684 - 687 (2008)
Enhancing the electroluminescent properties of organic light-emitting devices using a thin NaCl layer, et al., S. J. Kang, Appl. Phys. Lett. 81, 2581 (2002); http://dx.doi.org/10.1063/1.1511817.
White light emission from blends of blue-emitting organic molecules: A general route to the white organic light-emitting diode?, J. Thompson et al., Appl. Phys. Lett. 79, 560 (2001); http://dx.doi.org/10.1063/1.1388875.
Investigation of ultra-thin titania films as hole-blocking contacts for organic photovoltaics, H. Kim et al., J. Mater. Chem. A, 3, 17332-17343 (2015).
The Ossila website uses cookies for core functionality. By continuing to browse the website you consent to the use of these cookies.More Information
Online orders to can only be placed in . For other payment methods, request a quote or send a purchase order to info@ossila.com to purchase via offline channels.