FREE shipping on qualifying orders when you spend or more. All prices ex. VAT. Enjoy hassle-free delivery, fulfilled by our EU subsidiary. Backed by our 50 State Delivery Guarantee. Regional distributors also available.Sorry, we are unable to accept orders from or ship to .
It looks like you are using an unsupported browser. You can still place orders by emailing us on info@ossila.com, but you may experience issues browsing our website. Please consider upgrading to a modern browser for better security and an improved browsing experience.
With its very low solid-state ionisation potential and good-quality amorphous film, 4,4',4''-Tris[phenyl(m-tolyl)amino]triphenylamine, m-MTDATA acts as an effective material for the hole-injection buffer layer (HIL) that facilitates hole injection from the ITO electrode to the hole transporting layer (HTL). This potentially lowers the driving voltage of the OLED devices.
F4-TCNQ, a strong electron acceptor, is always used together with m-MTDATA as a p-doping material to improve the conductivity of the HTL buffering layer. Typical structure of the device (or part of the device) is ITO/p-doped m-MTDATA/HTL/etc.
Nanoscale transport of charge-transfer states in organic donor–acceptor blends, P. B. Deotare et al., Nat. Mater., 14, 1130-1135 (2015). DOI: 10.1038/NMAT4424.
Photophysical Investigation of the Thermally Activated Delayed Emission from Films of m-MTDATA:PBD Exciplex, D. Graves et al., Adv. Funct. Mater., 24, 2343–2351 (2014). DOI: 10.1002/adfm.201303389.
Highly efficient and color-stable white organic light-emitting diode based on a novel blue phosphorescent host, Q. Wu et al., Syn. Metals 187, 160– 164 (2014). http://dx.doi.org/10.1016/j.synthmet.2013.11.010.
Effect of type-II quantumwell of m-MTDATA/a-NPD on the performance of green organic light-emitting diodes, J. Yang et al., Microelectronics J.l40, 63–65 (2009). doi:10.1016/j.mejo.2008.08.004.
Solution-Processed Phosphorescent Organic LightEmitting Diodes with Ultralow Driving Voltage and Very High Power Efficiency, S. Wang et al., Sci. Report, 5:12487 (2015); DOI: 10.1038/srep12487.
Exciplex emission and decay of co-deposited 4,4′,4″-tris[3-methylphenyl(phenyl)amino]triphenylamine:tris-[3-(3-pyridyl)mesityl]borane organic light-emitting devices with different electron transporting layer thicknesses, Q Huang et al., Appl. Phys. Lett. 104, 161112 (2014); http://dx.doi.org/10.1063/1.4870492.
Red organic light-emitting diodes with high efficiency, low driving voltage and saturated red color realized via two step energy transfer based on ADN and Alq3 co-host system, K. Haq et al., Curr. Appl. Phys., 9, 257-262 (2009); doi:10.1016/j.cap.2008.02.005.
Low-voltage organic electroluminescent devices using pin structures, J. Huang et al., Appl. Phys. Lett. 80, 139 (2002); http://dx.doi.org/10.1063/1.143211.
High-efficiency electrophosphorescent white organic light-emitting devices with a double-doped emissive layer, W. Xie et al., Semicond. Sci. Technol. 20, 326–329 (2005); doi:10.1088/0268-1242/20/3/013.
Development of high-performance blue-violet-emitting organic electroluminescent devices, K. Okumoto et al., Appl. Phys. Lett. 79(9), 1231–1233 (2001).
Online orders to can only be placed in . For other payment methods, request a quote or send a purchase order to info@ossila.com to purchase via offline channels.